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Abstract 

Among many tools to solve the functions of many variables, Radial Basis Function (RBF) is one of them. RBF were first 

introduced by Powell for multivariate interpolation. The scientific computing with RBF focuses on construction and solution 

of partial differential equations.  

Wendland functions are the special case of RBF. Generally RBF follow the Poisson equation and the covariance can be 

calculated. This research aims to review the variance of Poisson based RBF with gamma prior by using hypergeometric 

function. 
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Introduction 

There are many ways to approximate a function with many variables. Almost all of them have their own limitations. If the 

dimension of the problem is large, it is difficult to choose the function to apply. In this case tensor product method may be the 

option.  The tensor product methods in high dimensions always require large data. In this situation, the only option is radial 

basis function. Due to its excellent approximation properties, at any rate it is universally applicable independent of dimension. 

[1] 

Radial Basis Functions (RBF) are means to approximate multivariable functions by linear combinations of terms based on a 

single univariate function is called radial basis function. They are usually applied to approximate functions or data which are 

only known at a finite number of points. RBF methods are modern techniques to approximate multivariate functions, 

especially in the absence of grid data. [1] RBFs were introduced in [2] and formed a primary tool for multivariate interpolation. 

Hardy [3] showed that multi quadrics (MQs) are related to a consistent solution of the biharmonic potential problem and thus 

they have a physical foundation. Buhmann and Micchelli [4] have shown that RBFs are related to pre wavelets. Kansa [5] 

illustrated firstly the idea of using RBFs collocation method for solving partial differential equations (PDEs) and forming a 

class of truly mesh-free method. 

Scientific computing with Radial Basis Functions focuses on construction of unknown functions from the known data. The 

functions are in general multivariate, and they may be solutions of partial differential equations satisfying certain initial 

conditions[5]. Compactly supported Radial Basis Functions, with polynomials were considered by Wu and Schaback[6] and 

are now called Wendland functions[7]. These functions are piecewise polynomials, and Wendland's construction provided 

functions with minimal degrees under the given conditions. 

The Wendland functions are a class of compactly supported radial basis functions with a user-specified smoothness parameter 

that converge uniformly to a Gaussian function as the smoothness of the parameter approaches infinity[8]. 

 
 Coker, B.[9] introduced the hypergeometric function to solve the poison process radial basis function netwok for homogenous 

gamma prior and obtained the satisfactory result In that case the hypergeometric function used was 2F1(a, b, c, z).  Similarly,  

Chernih, A. [10] used the hypergeometric function F(a, b, c, z) c = 0 to solve the Fourier transform of the Wendland function 
to disseminate the Gaussian equation. Bang Farnberg used the hypergeometric series 0F1 to solve the partial differential 

equation on oscillatory radial basis function [11].The result obtained was satisfactory and was in parallel with the other 

methods used to solve the differential equation. 
The aim of this paper is to review the hypergeometric series 2F1(a, b, c, z); c ≠ 0 to solve the Fourier Transform of Wendland 

function by a gamma prior function in RBF. 
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 Literature review 

RBF is a real-valued function ψ whose value depends only on distance between the input and some fixed point, either the 

origin, so that ψ(x) = ψ (||x||), or some other fixed point c, called a center. So that ψ (x) = ψ (||x − c||). Any function ψ that 

satisfies the property ψ (x) = ψ (||x||) is a radial function. The distance is usually Euclidean distance. Radial basis functions 

are means to approximate multivariable functions by linear combinations of terms based on a single univariate function (the 

radial basis function). This is interpreted so that in can be used in more than one dimension. They are usually applied to 

approximate functions or data in mathematics  

In mathematical studies, functions of many variables we often need to approximate by the help of other functions that are 

better understood or more readily evaluated. May be for generating in  computer graphics or other practical use. Radial basis 

functions are one efficient, frequently used way to do this. Further applications include the important fields of neural networks 

and learning theory. Since they are radially symmetric functions which are shifted by points in multidimensional Euclidean 

space and then linearly combined, they form data-dependent approximation spaces. This data-dependence makes the spaces 

so formed suitable for providing approximations to large classes of given functions. It also opens the door to existence and 

uniqueness results for interpolating scattered data by radial basis functions in very general settings  

The radial basis function network is an artificial neural network that uses radial basis functions as activation functions. The 

output of the network is a linear combination of radial basis functions of the inputs and neuron parameters. Radial basis 

function networks have many uses, including function approximation, time series prediction, classification, and system 

control. (9) 

Poisson Process Radial Basis Function Networks (PoRB-Nets), belong to the  interpretable family of RBFNs that employ a 

Poisson process prior over the center parameters in an RBFN. Intuitively, PoRB-Nets work by trading off between the 

concentration and scale of the radial basis functions. Consider that a higher concentration of basis functions allows for a 

smaller length scale but also a larger variance, since the basis functions add up. By making the scale of the basis functions 

depend inversely on their concentration, PoRB-Nets undo the impact on the variance.(9) 

A Poisson process (PP) on RD is a stochastic process characterized by a positive real-valued intensity function λ(c). For any 

set C ϵ RD, the number of points in C follows a Poisson distribution with parameter ∫ λ(c)dc  over c. The process is 

inhomogeneous if λ(c) is non-constant. We use a PP as a prior on the center parameters of an RBFN.(9) 

The term "hypergeometric function" sometimes refers to the generalized hypergeometric function. The first person to use the 

term "hypergeometric series" was by John Wallis in his 1655 book Arithmetica Infinitorum. Then the further studies on 

Hypergeometric series was done by   Leonhard Euler and was systematically developed by  Carl Friedrich Gauss (1813).  In 

mathematics, the Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) is a special function represented by the 

hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-

order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be 

transformed into this equation.  

The hypergeometric function is defined for |z| < 1 by the power series  

2F1(a, b, c, z) =∑
(a)n(b)nzn

(c)nn!
∞
n=0  

It is undefined (or infinite) if c equals a non-positive integer. Here (q)n is the (rising)  Pochhammer symbol which is defined 

by: (q)n = {
1 n = 0

q(q + 1)(q + 2)(q + (n − 1)) n > 0
} 

The series terminates if either a or b is a non positive integer. In this case the function reduces to a polynomial  

2F1(-m, b, c, z) =∑ (−1)n (
m
n

)
(b)nzn

(c)n

∞  
n=0  

 

The hypergeometric function can be expressed as pFq= ∑
(a1)(a2)(a3)(a4)−−−−−−−−−(ap)

n!(b1)(b2)(b3)−−−−−−−−−−−(bq)
∞
n=0 Zn , where n is the number of 

parameter ai and q is the number of parameter bj. It is the solution of the differential equation z(1-z)w” + [c-(a+b+1)z]w’ -

abw = 0 [13, 14] which has three regular singular points: 0,1 and ∞. The generalization of this equation to three arbitrary 

regular singular points is given by Riemann's differential equation. Any second order differential equation with three regular 
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singular points are converted to the hypergeometric differential equation by a change of variables.  It is used to solve the 

differential equations with the wide number of variables. 

Solutions to the hypergeometric differential equation are built out of the hypergeometric series 2F1(a,b;c;z). The 

equation has two linearly independent solutions. At each of the three singular points, 0, 1, ∞, there are usually two 

special solutions of the form xs times a holomorphic function of x.  And s is one of the two roots of the indicial 

equation and x is a local variable vanishing at the regular singular point.  

The property of the function of retaining its form where two variables are linearly transformed is called the covariance. The 

word variance refers to the statistical measurement that is diversified then the original set. More specifically, it measures the 

deviations from the mean and the values in the given set. 

In tensor product problems, many functions are solved by means of RBF. Rayleigh-Ritz applications was applied  to solve the 

partial differential equation by using radial basis function. It is because RBF replace other meshless tools like multi quadrics. 

They generate sparse and well-conditioned matrices, which is relevant for boundary element techniques.  

Mirinejad, H.[15] tried to solved the optimal control problem by means of RBF. His work presents two direct methods based 

on the radial basis function interpolation and arbitrary discretization for solving continuous-time optimal control problems: 

RBF Collocation Method and RBF-Galerkin Method. Both methods take advantage of choosing any global RBF as the 

interpolant function and any arbitrary points (meshless or on a mesh) as the discretization points. Huaiquing, Z. et al [16] 

applied the basic linear function to solve the non linear equations and they observed that the superior interpolation performance 

of multi quadratic function, the method can acquire higher accuracy with fewer nodes, so it takes obvious advantage over the 

Gaussian RBF method which can be revealed from the numerical results. 

The entire theory of the RBF of compact support are piecewise polynomial definite. This theory encompasses recursions for 
the coefficients when they are expanded in linear combinations of powers and truncated powers of lower order with 

convergence results, and minimalism of polynomial degree for given dimension and smoothness  

 

Cho, Y.[17] extended the positivity for integrals of Bessel function and Buhmann’s radial basis function by using the 

hypergeometric function. He used Saalschutzian series , Wipples transformation to evaluate the integral of Bessel’sfunction 

and Buhmann’s Radial Basis Function. The Saalschutzian series, Wipples transformation are the important tools in 

hypergeometric series. 

Coker, B. et. al[9] have extended radial basis function networks (RBFNs) that allows for independent specification of 

functional amplitude variance and length scale (i.e., smoothness), where the inverse length scale corresponds to the 

concentration of radial basis functions. When the length scale is uniform over the input space, the result was consistent and 

approximate variance was achieved. The model’s behavior have been compared to standard BNNs and Gaussian processes 

using synthetic and real examples. To calculate the variance under Poisson process radial basis function network for 

homogeneous process with gamma prior it, found that:  

V(x1, x2)  = ∬ ϕ(s(x1-c)) ∬ ϕ(s(x2-c))p(c/λ)p(λ)dλdc  

where λ is the center parameter which is uniformly distributed over the domain c. 

 = ∬ exp {−
1

2
(so

2λ2(x1 − c))2} exp {−
1

2
(so

2λ2(x2 − c))2}
1

μ(c)
 

βα

γ(α)
λ2(α−1)e−βλ2

dλdc 

= 
1

μ(c)
 

βα

γ(α)
 ∬ λ2(α−1)exp{−λ2[

1

2
 so

2(x1 − c)2 +
1

2
 so

2(x − c) + β]}dλdc 

= 
1

μ(c)
 

βα

γ(α)
 ∬ λ2(α−1)exp{−λ2β̌(C)}dλdc  

                                      Where β̌(C) =
1

2
S0

2(x1 − c)2+ 
1

2
S0

2(x − c) +β ---- (1) 

= 
βα

μ(c)
[∫

1

γ(α)
( ∫ λ2(α−1) exp{−λ2β̌(C)}dλ]dc 
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= 
βα

μ(Ϲ)
 ∫ β̌−α(  Ϲ)dϹ  ----------------------   (2) 

Since the equation (2) is the gamma probability density function, it was solved with the inner integral. 

         Now  β̌(C) =
1

2
S0

2(x1 − c)2+ 
1

2
S0

2(x − c) +β 

  = S0
2 [

1

2
(x1 − c)2 + 

1

2
(x − c)] +β 

= S0
2 [

1

2
(x1

2 − 2x1c + c2 +
(x−c)

2
] +β      -----  (3) 

If x= (x2
2+c)2+c then equation (3) reduces to  

               β̌(C) = S0
2 [

1

2
(x1

2 − 2x1c + c2 +
1

2
((x2

2 + c)2 + c) − c] +β  

            = 
1

2
 S0

2[2c2 − 2x1c + 2x2c + x1
2 + x2

2] +β 

=S0
2 [c2 − 2c (

x1+x2

2
) +

1

2
 (x1

2 + x2
2)] +β    ------------  (4) 

Let  xm =  
x1+x2

2
 Then equation (4) reduces to 

β̌(C) = S0
2 (c - xm)2 + S0

2 (
x1−x2

2
)2+ β     

                       =  u2 + r2  

where u2 = S0
2(c - xm)2   and r2   = S0

2 ( 
x1−x2

2
 )2 

      Then ∫ β̌−α(  Ϲ)dϹ=∫ (u2 + r2)2dU
U1

U0
 

                                             =Ur
-2α 

2F1 [
1

2,
α,

3

2
, −

u2

r2
] 

u1

uo
     

where the hypergeometric function 2F1(a, b, c, z) =∑
(a)n(b)nzn

(c)nn!
∞
n=0  

And (q)n = {
1 n = 0

q(q + 1)(q + 2)(q + (n − 1)) n > 0
} 

By using the commutative property of hypergeometric, function  

2F1 [
1

2,
α,

3

2
, −

u2

r2
] =  2F1 [α

1

2,
,

3

2
, −

u2

r2
] it can be written as  

∫ β̌−α(  Ϲ)dϹ = Ur
-2α 

2F1 [α
1

2,
,

3

2
, −

u2

r2
]

u1

uo
    ------------------------- (5)  

Here it is noted that     Uo=So
2(c0-xm)  and  U1=So

2(c1-xm)  

Replacing the values of (5) in (2), the variance is obtained as  

V(x1, x2) = 
1

μ(c)
(

β

r2
)

−α
[

1

(x−c0)
{2F1( α,

1

2,
,

3

2
, −

s2(co−x)2

r2 }  + 
1

(c1−x)
  {2F1( α,

1

2,
,

3

2
, −

s2(c1−x)2

r2 } ] 

This is the solution of the variance of homogeneous Poisson process radial basis function for the gamma prior. 

http://www.jetir.org/


© 2020 JETIR December 2020, Volume 7, Issue 12                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2012096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 757 
 

 

Results  

Through the series of derivations, the variance of the homogeneous Poisson process radial basis (PoRB) function by using the 

transitive property on gamma prior was found out. It was initially found out by Coker, B. et. al[9], which provided the 

sufficient results for covariance without gamma prior as well. There is a slight change in the result and this was due to the 

property applied in the hypergeometric function. Thus the result obtained is  

V(x1, x2) = 
1

μ(c)
(

β

r2
)

−α
[

1

(x−c0)
{2F1( α,

1

2,
,

3

2
, −

s2(co−x)2

r2 }  + 
1

(c1−x)
  {2F1( α,

1

2,
,

3

2
, −

s2(c1−x)2

r2 } ] 

 

Conclusion 

The computation of variance in RBF is mainly based in the work of Coker on PoRB Nets. In general, PoRB nets allows for 

a) Easy specification of length scale and amplitude variance information. 

b) Learning of an input independent length scales. 

So the computation of variance has significant importance in the network functions. 

 

Author Contribution 

 Madhav Prasad Poudel is the sole author of this work. The conceptualization, methodology, analysis and 

preparation of the manuscript have been done by myself. 

Funding 

There is not any specific funding available for this research work.  

Conflicts of Interest  

The author declares no conflict of interest. 

 

Bibliography 

(1) Buhmann, Martin D. "Radial basis functions." Acta numerica 9 (2000): 1-38 

(2) R. L. Hardy, “Multiquadric equations of topography and other irregular surfaces,” Journal of Geophysical Research, vol. 

176, pp. 1905–1915, 1971. 

(3) Hardy, Rolland L. "Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988." 

Computers & Mathematics with Applications 19.8-9 (1990): 163-208.  

(4) M. D. Buhmann and C. A. Micchelli, “Multiquadric interpolation improved,” Computers & Mathematics with 

Applications, vol. 24, no. 12, pp. 21–25, 1992.  

(5)  E. J. Kansa, “Multiquadrics—a scattered data approximation scheme with applications to computational fluid-

dynamics— II. Solutions to parabolic, hyperbolic and elliptic partial differential equations,” Computers & Mathematics 

with Applications, vol. 19, no. 8-9, pp. 147–161, 1990. 

(6)  Schaback, Robert. "A practical guide to radial basis functions." Electronic Resource 11 (2007): 1-12. 

(7) Argáez, Carlos, Sigurdur Hafstein, and Peter Giesl. "Wendland functions a C++ code to compute them." Proceedings of 

the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, 2017, 

Madrid, Spain. SCITEPRESS, 2017 

(8) Schaback, Robert, and Holger Wendland. "Using compactly supported radial basis functions to solve partial differential 

equations." WIT Transactions on Modelling and Simulation 23 (1970). 

http://www.jetir.org/


© 2020 JETIR December 2020, Volume 7, Issue 12                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2012096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 758 
 

(9) Coker, Beau, Melanie Fernandez Pradier, and Finale Doshi-Velez. "PoRB-Nets: Poisson Process Radial Basis Function 

Networks." Conference on Uncertainty in Artificial Intelligence. PMLR, 2020. 

(10) Chernih, Andrew, Ian H. Sloan, and Robert S. Womersley. "Wendland functions with increasing smoothness converge 

to a Gaussian." Advances in Computational Mathematics 40.1 (2014): 185-200 

(11). H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. 

Comput. Math., 4 (1995), pp. 389–396 

(12) Fornberg, Bengt, Elisabeth Larsson, and Grady Wright. "A new class of oscillatory radial basis functions." Computers 

& Mathematics with Applications 51.8 (2006): 1209-1222. 

(13) Rainville, Earl D. "Special functions." (1971). 

(14) Seaborn, James B. Hypergeometric functions and their applications. Vol. 8. Springer Science & Business Media, 2013. 

(15) Mirinejad, Hossein. "A radial basis function method for solving optimal control problems." (2016). 

(16) Zhang, Huaiqing, et al. "Application of radial basis function method for solving nonlinear integral equations." Journal of 

Applied Mathematics 2014 (2014). 

(17) Cho, Yong-Kum, Seok-Young Chung, and Hera Yun. "An extension of positivity for integrals of Bessel functions and 

Buhmann's radial basis functions." arXiv preprint arXiv:1805.11863 (2018). 

http://www.jetir.org/

